
A Naive Prover for
First-Order Logic

Formalized in Isabelle/HOL
Asta Halkjær From

PhD student at the Technical University of Denmark

LSD Seminar talk, 2022-05-06

Motivation

First-Order Logic is ubiquitous

Its semi-decidability is a classic result

The naive prover may be naive but we:

- Formalize a classic result
- Illustrate one way to formalize a logic + prover in Isabelle/HOL
- Use techniques applicable to less naive provers
- Have fun

Overview

- First-Order Logic in Isabelle/HOL
- Sequent Calculus
- Prover Idea

- Fair Streams
- Natural Number Encoding

- Performance on Example Proofs
- Abstract Completeness Framework

- Formalizing the Prover
- Soundness
- Completeness
- A Less Naive Prover?

Isabelle/HOL Proof Assistant

Work in higher-order logic rather than English

think functional programming + logic

We can give precise definitions

We can verify results

We can get help

We can spit out programs

FOL Syntax

Two tiers:

- Terms s, t:
- variables: x, y, z
- functions applied to terms: a, f(x), g(a, h(y))

- Formulas p, q:
- falsity: ⊥
- predicates on lists of terms: P(t), Q, R(u, v)
- implication: p ⟶ q
- universal quantification: ∀x. p(x)

De Bruijn: write ∀x. ∀y. p(x, y) as ∀∀p(1, 0)

FOL Syntax in Isabelle/HOL

We deeply embed the FOL syntax as objects in HOL

Terms:

Formulas:

FOL Semantics in Isabelle/HOL

Write functional program (+ logic) that interprets model + syntax in HOL

Sequent Calculus I

Proof system for first-order logic

Based on sequents A ⊢ B:

Think of A as assumptions and B as possible conclusions:

Benefit: subformula property

Sequent Calculus II (obtusely)

From System LK on Wikipedia:

If we see p ⟶ q on the right, we just continue as above the line (with p and q).

But we only look at the first formula? What if it’s a predicate?
Then we need to move things around? Could we forget about a formula?

And how do we pick t here? What if we get it wrong? Do we need to copy first?

Sequent Calculus III

An implication is useful once (there are only two subformulas).
A universal quantification may be useful twice, thrice, who knows how many times.

Should we keep applying the ∀L rule?
We might ignore all the other formulas!

Maybe we can be smart? Devise a fair strategy?
Find out exactly which t’s we need to instantiate with?

Or maybe we can be really naive! Wait for divine inspiration! Exact instructions!

Sequent Calculus With Very Specific Rules

Example Prover Output

|- (P --> Falsity) --> (P --> Falsity)
 + ImpR on P --> Falsity and P --> Falsity
P --> Falsity |- P --> Falsity
 + ImpR on P and Falsity
P, P --> Falsity |- Falsity
 + ImpL on P and Falsity
 P |- P, Falsity
 + FlsR
 P |- P
 + Axiom on P
 Falsity, P |- Falsity
 + FlsL

Prover Idea I

How do we get this divine inspiration? These exact instructions?

A stream of rules could tell us what to do

- Say we have the sequent ⊢ †0 [] ⟶ †0 []
- The rule ImpR (†0 []) (†0 []) says we can prove it if
- we can prove the sequent †0 [] ⊢ †0 []

We must always eventually reach the rule we need

- We need to reach Axiom 0 [] for the sequent †0 [] ⊢ †0 []
- But Axiom 1 [] doesn’t harm us

Prover Idea II

Pretend numbers are rules. Consider the stream:

0 1 2 3 4 5 6 7 8 9 10 11 12 …
Every number appears somewhere in the sequence

So we will reach the number we need at some point!

But what if we need it twice? Or we need 12 before we need 5?

Prover Idea III

Consider instead the stream of numbers

0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 …
Every number keeps appearing

The stream is fair (but larger numbers are further away than before)

How to get a fair stream of rules?

My Theory Fair-Stream

A handful of lemmas later…

[0] [0, 1] [0, 1, 2] [0, 1, 2, 3] …

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, …

Pick any m. Any x appears after.

Encoding To and From the Natural Numbers

The Isabelle theory Nat-Bijection provides the following operations:

- prod_encode :: "nat × nat ⇒ nat" for p ⟶ q
- prod_decode :: "nat ⇒ nat × nat"
- sum_encode :: "nat + nat ⇒ nat" for ⊥ | P(t) | …
- sum_decode :: "nat ⇒ nat + nat"
- list_encode :: "nat list ⇒ nat" for f(...)
- list_decode :: "nat ⇒ nat list"

I write ‹c $ x ≡ sum_encode (c x)›

Encoding Terms as Natural Numbers

Encoding Formulas as Natural Numbers

Encoding Rules as Natural Numbers

What Does It Matter? I

Recall that the sequence looks like: 0 0 1 0 1 2 0 1 2 3 …

We reach 1865 only at position 1865*(1+1865)/2 = 1740045.

What Does It Matter? II

The numbers in the formulas matter:

We reach 469 at position 110215
We reach 5409 at position 14631345

Example Proofs I

time ./Main "Imp (Pre 0 []) (Pre 0 [])"

|- (P) --> (P)

 + ImpR on P and P

P |- P

 + Axiom on P

Executed in 9.80 millis

Example Proofs II
time ./Main "Imp (Uni (Pre 0 [Var 0])) (Pre 0 [Fun 0 []])"

|- (forall P(0)) --> (P(a))
 + ImpR on forall P(0) and P(a)

forall P(0) |- P(a)
 + UniL on 0 and P(0)
P(0), forall P(0) |- P(a)
 + UniL on a and P(0)

P(a), P(0), forall P(0) |- P(a)
 + UniL on 1 and P(0)
P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on f(0) and P(0)
P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on b and P(0)
P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on 2 and P(0)
P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on f(0, 0) and P(0)
P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on g(0) and P(0)
P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on c and P(0)
P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on 3 and P(0)
P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on f(a) and P(0)
P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on g(0, 0) and P(0)
P(g(0, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on h(0) and P(0)
P(h(0)), P(g(0, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on d and P(0)
P(d), P(h(0)), P(g(0, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on 4 and P(0)
P(4), P(d), P(h(0)), P(g(0, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on f(0, 0, 0) and P(0)
P(f(0, 0, 0)), P(4), P(d), P(h(0)), P(g(0, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on g(a) and P(0)
P(g(a)), P(f(0, 0, 0)), P(4), P(d), P(h(0)), P(g(0, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on h(0, 0) and P(0)

P(h(0, 0)), P(g(a)), P(f(0, 0, 0)), P(4), P(d), P(h(0)), P(g(0, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1),
P(a), P(0), forall P(0) |- P(a)
 + Axiom on P(a)
__

Executed in 3.51 secs

We need to get to 1865 to hit the ImpR rule.

Then we start back at 0.

The UniL rule we need is at 997.

But then we keep running from 997 to 1866.

And hit lots of UniL rules in between…

In the end: a very silly derivation.

Example Proofs III

time ./Main "Imp (Pre 0 []) (Imp (Pre 0 []) (Pre 0 []))"

|- (P) --> ((P) --> (P))

 + ImpR on P and (P) --> (P) (position 110215)
P |- (P) --> (P)

 + ImpR on P and P

P, P |- P

 + Axiom on P

__

Executed in 192.72 millis

Example Proofs IV

time ./Main "Imp (Pre 0 []) (Imp (Pre 1 []) (Pre 0 []))"

|- (P) --> ((Q) --> (P))

 + ImpR on P and (Q) --> (P) (position 14631345)
P |- (Q) --> (P)

 + ImpR on Q and P

Q, P |- P

 + Axiom on P

__

Executed in 43.01 secs

The Abstract Completeness Framework

We base the prover on a framework by Blanchette, Popescu and Traytel

Their code includes a naive prover for propositional logic (no proofs)
Their paper includes ideas for a naive prover for first-order logic

My entry realizes those ideas

https://www.isa-afp.org/entries/Abstract_Completeness.html

Blanchette, J.C., Popescu, A. & Traytel, D. Soundness and Completeness Proofs
by Coinductive Methods. Journal of Automated Reasoning 58, 149–179 (2017).
https://doi.org/10.1007/s10817-016-9391-3

https://www.isa-afp.org/entries/Abstract_Completeness.html

What’s In A Prover?

Our sequent calculus prover attempts to build a proof tree using a stream of rules:

Such an attempt can be infinite so we need codatatypes:

The root of the proof tree is our sequent + the first applicable rule
The children are the proof trees for the sequents obtained by applying this rule

What’s Required of a Prover?

The framework requires that:

- We explain what rules do and give a stream of rules
- We pick a set S of proof states that our prover stays within
- Some rule always applies (hint: Idle!)
- Our rules are persistent: they do not step on each other’s toes

What’s Delivered by a Prover?

The framework tells us the prover produces one of two things:

- A finite, well formed proof tree
- Soundness: show that this guarantees validity of the formula

- a saturated escape path (epath)
- Completeness: show that this induces a counter model for the formula

Sequent Calculus With Very Specific Rules Reprise

What Our Rules Do

Our Stream of Rules

A datatype for our rules

Our fair stream of rules

which includes every rule
(so also Idle)

Instantiating the Framework

We can easily instantiate the framework:

Soundness

Prove that valid premises ensure valid conclusions.

The framework lifts local soundness:

To global soundness:

Completeness

Way more fun!

We need to transform a failed proof attempt (epath) into a counter model

- Look at every sequent on the infinite branch
- Satisfy every predicate in assumptions (no predicate in conclusions)

- No overlap or an Axiom rule would have terminated the branch
- Satisfiability lifts to each connective

- Because our rules are sensible

We can characterize the properties of an epath syntactically

Hintikka Sets

A: set of assumption formulas on epath, B: set of conclusion formulas on epath

Now think of A as formulas to satisfy and B as formulas to falsify

Occurrence of a formula demands presence of corresponding evidence

Axiom would have kicked in
FlsL would have kicked
ImpL has kicked in
ImpR has kicked in
UniL has kicked in
UniR has kicked in

Counter Model

We will use the term universe: terms are interpreted as themselves

The counter model for epath sets A, B is given by:

A predicate is true when it occurs in A.

This gives a counter model:

Saturated Escape Paths Form Hintikka Sets

Most gnarly part of the formalization due to the use of codatatypes

But! We are helped by having very specific rules.

Say we need to show ImpB: if some p ⟶ q is in B then p is in A and q is in B

- If p ⟶ q is in the proof tree then ImpR p q is enabled at some point
- So at some later point it will be applied and have the desired effect
- Profit

Result

We have a sound and complete prover:

We can export it to Haskell and run on it real examples

A Less Naive Prover?

Frederik Krogsdal Jacobsen and I have used similar techniques for another prover

The rules there are based on SeCaV: https://secav.compute.dtu.dk/

There we are smart. 3000 lines of formalization instead of 900.
We do not instantiate with every term, so we need a custom bounded semantics.
We apply rules to every matching formula to ensure fairness. Many concerns!

Accepted at ITP 2022 (Interactive Theorem Proving) and to the AFP:
https://www.isa-afp.org/entries/FOL_Seq_Calc2.html

https://secav.compute.dtu.dk/
https://www.isa-afp.org/entries/FOL_Seq_Calc2.html

References

My prover + formalization:
https://www.isa-afp.org/entries/FOL_Seq_Calc3.html

The abstract completeness framework by Blanchette, Popescu and Traytel:
https://www.isa-afp.org/entries/Abstract_Completeness.html

Blanchette, J.C., Popescu, A. & Traytel, D. Soundness and Completeness Proofs
by Coinductive Methods. Journal of Automated Reasoning 58, 149–179 (2017).
https://doi.org/10.1007/s10817-016-9391-3

https://www.isa-afp.org/entries/FOL_Seq_Calc3.html
https://www.isa-afp.org/entries/Abstract_Completeness.html

